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Abstract 

Coastal seascapes are valuable habitat for animals and humans alike, providing numerous 

ecosystem services. Within coastal seascapes, habitats that are better connected and 

contain highly complex structures (e.g. inshore rocky and coral reefs), often contain a 

greater diversity and abundance of species. Reef systems, particularly those situated near 

the coast, are however, under constant threat from anthropogenic disturbances and 

exposure to sediments, pollutants and nutrients that are discharged from the land. In this 

study I surveyed fish communities using two sampling methods, baited and unbaited remote 

underwater video systems to determine the spatial and habitat drivers of fish community 

structure, diversity and abundance on inshore rocky reefs. I found that species richness, 

harvested and total fish abundance were modified by reef complexity and connectivity to 

headlands, urbanistation and neighbouring reef patches. All fish functional groups, 

herbivores, omnivores, piscivores and zoobenthivores increased in abundance on reefs that 

were of moderate extent, highly complex and further urbanistation. Finally, I found that 

baited remote underwater video systems identified a greater diversity and overall abundance 

of fish compared to those on unbaited cameras. I highlight the importance of understanding 

the different features that influence fish assemblages in coastal seascapes, with fish 

communities here typically modified by reef quality and position within the broader seascape, 

however, these effects are modified by urbanistation. I suggest that in order to maximise 

benefits for fish communities, conservation and management must focus on conserving 

inshore rocky reefs that are located within a complex seascape and had the greatest 

complexity.  
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Introduction 

Globally, coastal ecosystems are facing significant threat due to their heavy use from human 

activities (Lotze et al. 2006, Worm et al. 2006), however many of these activities are 

essential for trade, energy, and resource gathering (Halpern et al. 2008). Due to extensive 

human disturbance throughout coastal ecosystems, habitat degradation and biodiversity loss 

have been accelerated, undermining the ecological resilience of coastal ecosystems 

(Jackson et al. 2001, Syvitski et al. 2005, Barbier et al. 2011). In particular, many coastal 

ecosystems have been under constant threat from increased urban development, climate 

change and overfishing (Stuart-Smith et al. 2008), and globally, are declining in species 

abundance, richness and productivity (Willis et al. 2003, Mora et al. 2011). Due to the 

impacts of urbanisation, the health and resilience of critical fish populations and habitat have 

diminished, as well as the important ecological functions that they provide (e.g. herbivory, 

predation and carrion consumption) (Olds et al. 2018a). Coastal seascapes are composed of 

a mosaic of different ecosystems, including intertidal mangroves forests, saltmarsh, 

seagrass meadows, shellfish reefs, and coral and rocky inshore reefs (Burke et al. 2001), 

which are strongly influenced by the condition of the broader landscape, ultimately modifying 

the composition of fish communities (Mellin et al. 2016, Hölting et al. 2019, Gaines et al. 

2020). For example, marine reserves located within a complex seascape,which generally 

have reduced human disturbance and better habitat condition (e.g. connected and complex 

structures), have been shown to have a greater abundance and richness of harvested and 

functionally important fish species than those areas impacted by humans (Gaines et al. 

2020). Similarly, high quality mangrove forests and seagrass meadows that have greater 

complexity (e.g. increased shoot length or pneumatophore counts) can offer increased 

protection and refuge for juvenile fish species from predators (Primavera 1997, Nanjo et al. 

2011, Nanjo et al. 2014, Mosman et al. 2023). Maintaining coastal ecosystems in a good 

condition and well connected with other ecosystems offers an ideal approach to support a 

greater abundance and diversity of coastal fish (Olds et al. 2012b). 
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Habitat connectivity, which is the linkage between ecosystems, modifies the movement of 

organisms for feeding, reproduction, and dispersal, shapes food webs and promotes 

diversity in ecosystems (Boström et al. 2011, Hyndes et al. 2014, Olds et al. 2018b). 

Habitats that are better connected often contain a greater diversity and abundance of 

species, and can maintain a greater level of overall ecological functioning (Olds et al. 

2012b). For example, reef fish rely on connected habitats to regulate their population 

through predation and reproduction, with energy transferred through the ecological functions 

supported by species (e.g. herbivory on coral reefs) (Sheaves 2009). The magnitude and 

direction of connections within coastal seascapes are dictated by the spatial arrangement of 

ecosystems (Cowen et al. 2007, Olds et al. 2018b, Borland et al. 2021). Many marine 

organisms rely on high connectivity between ecosystems throughout their lives, such as the 

movement of coastal fish between habitats (Nagelkerken et al. 2015), migration of whales 

from breeding areas to feeding areas (Rosenbaum et al. 2014) and dispersal of propagules 

in the oceans currents (Lee et al. 2014). Human disturbance has, however, drastically 

impacted connectivity between ecosystems globally with land-use changes, habitat 

destruction and fragmentation from urbanisation pressures posing significant challenges to 

biodiversity and conservation worldwide (Sala et al. 2000). Improving connectivity, and 

reducing habitat fragmentation and loss are crucial factors for both the conservation and 

restoration of fish habitat as well as the management of fish communities (Gilby et al. 2018b, 

Young et al. 2018). Consequently, in recent years conservation, restoration and 

management practices that focus on improving the connectivity between complex, high 

quality habitats have been prioritized (Weeks 2017, Gilby et al. 2018a, Perry et al. 2023). 

 

Complex habitats provide increased resources, refugia, and reproductive opportunities for 

species (Beyer et al. 2010, Doherty & Driscoll 2018), often leading to the abundance and 

diversity of species in an ecosystem being greater within complex ecosystems (Graham & 
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Nash 2013). This structural complexity creates microhabitats for animals within the 

ecosystem, increasing diversity and abundance due to the additional niche space that is 

created in these complex ecosystems (Crowder & Cooper 1982). Structural complexity can 

vary in degree between different marine habitats, like coral reefs or rocky reefs, which 

generally exhibit higher levels of complexity when contrasted with unstructured habitats such 

as macroalgae beds or sand/rubble beds (Hall & Kingsford 2021). Furthermore, coral reefs 

are some of the world’s most diverse ecosystems due to the large variety of available 

feeding niches created by this heterogenous structural complexity (Boaden & Kingsford 

2015). These complex habitats also mediate the growth and mortality rates in juvenille fish 

species (Bradley et al. 2019) and are often the main driver of population regulation 

(Chambers & Trippel 2012). Within these complex habitats, large bodied species (e.g. 

Lutjanidae, Haemulidae and Serranidae) rely on boulders, caves and tabulate corals found 

in structurally complex reefs for enhanced predation opportunities (Kerry & Bellwood 2012), 

while small bodied species occupy the microhabitats provided by small rocks, branching 

corals and seagrasses which provide shelter from predators (Wilson et al. 2008, Boström-

Einarsson et al. 2013). Subsequently, this varied complexity of benthic habitats within 

coastal seascapes mediates predator-prey interactions (Garpe & Öhman 2003), particularly 

within the shelter-rich substrate of reef communities (Jones et al. 2004, Boaden & Kingsford 

2015). 

 

Globally, inshore rocky reef systems (<1.4km from shore (Vanderklift et al. 2009) typically 

contain a greater diversity of fish species, at higher abundance, and with a greater number 

of juvenile fish compared to nearby bare substrate (Guidetti 2000). Inshore reefs can be 

found amongst other complex non-reef habitats within heterogenous seascapes (Pittman & 

Brown 2011), such as surf zones (Olds et al. 2018c), estuaries (Olds et al. 2012b, Mosman 

et al. 2020) and headlands (Quaas et al. 2019). The highly complex structures of inshore 

reefs benefit fish assemblages through the shelter and resources they provide, leading to 



 13 

greater fish abundance and richness (García-Charton & Pérez-Ruzafa 2001, Friedlander et 

al. 2003, Emslie et al. 2008). Rocky and coral reef systems, particularly those situated near 

the coast, are under constant threat from exposure to sediments, pollutants and nutrients 

that are discharged from the land (McCulloch et al. 2003, Bainbridge et al. 2018) and 

physical pressures such as waves and currents (Jackson-Bué et al. 2022). With high wave 

activity, sediment may bury or expose the rocky structure increasing stress on the inshore 

reef, modifying both benthic and mobile marine organisms (Ricardo et al. 2016, Latrille et al. 

2019). As inshore rocky reef patches are dynamic and constantly shifting, this modifies their 

connectivity to other habitats and the size of the reef, which ultimately will influence the 

distribution of coastal fish communities (Acosta & Robertson 2002, McManamay et al. 2014, 

Stier et al. 2014). 

 

Coastal ecosystems are well understood in many settings (Olds et al. 2012b, Gilby et al. 

2018, Mosman et al. 2020), however, quantifying the environmental drivers of inshore rocky 

reef fish communities within the broader coastal seascape is one area that remains 

understudied, particularly in subtropical seascapes. Here, we assess how habitat 

connectivity, context and condition variables modify the structure of fish communities on 

inshore rocky reefs. These ecosystems provide a crucial link for fish species in the coastal 

seascape mosaic, where species move between estuaries, headlands, surf zones and 

offshore reefs. Therefore, the aims of this study are to: 1) determine how differing habitat 

complexity and connectivity influence fish community structure, species richness and fish 

abundance on inshore rocky reefs and 2) identify how two complementary survey methods 

modify the outcomes of these findings. I expect that 1) higher abundance and species 

diversity will occur at complex and well-connected reefs due to the increased availability of 

resources, and foraging opportunities, and 2) that a greater abundance and diversity will 

occur on large reef patches that are well connected and 3) that a baited sampling approach 

will identify more fish species at higher abundances, due to the attraction of the bait. 
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Methods 

Study area 

Fish assemblages were recorded at a total of 13 inshore reefs across a ~35km stretch of 

coastline in southeast Queensland, Australia (Fig. 1), with the northern most reef being Point 

Arkwright (-26.54°S, 153.10°E), spanning down to the southernmost reef, Caloundra 

headland (-26.80°S, 153.15°E). This coastline supports a wide array of ecosystems 

including inshore reefs, offshore reefs and estuaries, and landscape features such as 

headlands and exposed beaches. This region does, however, include stretches of coastline 

that have been modified with moderate to high levels of urbanisation (e.g. modified 

shorelines, habitat removal and replaced with urban structures). To maximise variation, the 

13 inshore reefs in this study were selected across a gradient of distances to (1) an estuary 

mouth (2) urban land (3) headlands and (4) nearest neighbouring reef patch. We sampled 

during the austral winter season and during daylight hours and when the tide was high 

(Borland et al. 2017). To minimise the effects of wave activity on sampling, I only surveyed 

inshore reefs when swell height was less than 1 m and swell period was below 10 seconds 

(Mosman et al. 2020). 
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Figure 1 Fish assemblages we surveyed along a 35km stretch of coastline on the 
Sunshine Coast, Queensland. Locations were selected by their connectivity and 
variation of nearby habitats and features. To survey fish species, RUVS and BRUVS 

were deployed at 13 inshore reef sites, indicated by the red spots. 
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Fish assemblages 

Fish assemblages were surveyed using unbaited and baited remote underwater video 

systems (RUVS and BRUVS) (Henderson et al. 2017). These devices consist of a GoPro 

camera mounted on a 15kg disc to ensure low movement when submerged. Each BRUVS 

and RUVS had a 1m PVC pipe pointing away from the camera (Ortodossi et al. 2019). For 

the BRUVS, a bait bag (20cm x 30cm) was filled with approximately 500g of pilchards 

(Sardinops sagax) and then attached to the end of the pipe. Pilchards were used as they are 

the standard bait for BRUVS in this region of the world (Wraith et al. 2013). At each site, five 

replicate RUVS were deployed for 30 minutes and at minimum, 200m apart to avoid the 

confounding effects of one individual being observed on multiple cameras (Dorman et al. 

2012). Each deployment was optimally dropped in a depth of 3-4 m and made to ensure they 

were facing rocky reef structure (Henderson et al. 2019) . Every replicate was deployed 

behind the breaking waves to limit the possibility of swell moving the camera (Mosman et al. 

2020). BRUVS were deployed for one hour due to the bait bags attracting more individuals 

subsequently maximising possible assemblage variation, with the same sites sampled as the 

RUVS. This yielded 32.5 hours of RUVS footage and 65 hours of BRUVS footage, a 

combined total of 97.5 hours. Species richness, total fish abundance, harvested fish 

abundance and the abundance of fish in each functional group (e.g. herbivore, omnivore, 

piscivore, zoobenthivore, zooplanktivore, based on Elliott et al. (2007) were calculated using 

the MaxN statistic, wherein the maximum number of individuals of the same species can be 

seen on a single frame at a time, a standard method when sampling with BRUVS and RUVS 

(Harvey et al. 2007).  

 

Classifying seascape variables 

To determine which different seascape features described the variation in coastal fish 

assemblage compositions I measured multiple seascape factors that are known to influence 

coastal fish assemblages in this region (Olds et al. 2018a, Mosman et al. 2020). I used the 
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aerial imagery program NearMap (NearMap 2022) to measure: (1) distance to nearest 

estuary mouth, (2) distance to nearest headland, (3) distance to nearest reef patch, (4) 

distance to urbanisation, (5) distance to shoreline, and we used QGIS (QGIS Development 

Team 2022) to calculate (6) the area of headland within a 500m and 4km buffer, (7) the area 

of urban land within 500m and 4km buffer and (8) the area of reef structure within a 500m 

and 4km buffer of each deployment (Table 1). I decided to use these two spatial buffers to 

reflect both small- and large-scale impacts and habitat availability (Henderson et al. 2022). I 

analysed RUVS footage to categorize the complexity levels of the reef at each deployment 

on a rating of zero to five. Complexity ratings of zero to one were characterised by a lack of 

three-dimensional structure, typically bare sediment with sandy substrate. Two to three were 

structurally simple communities, with scattered small rocks or coral structures. Four to five 

contained highly complex three dimensional structures, with high vertical relief, typically 

many large rocks or coral growth providing refuge and shelter (Fabricius et al. 2014). In the 

R statistical framework (R Core Team 2022), the environmental metrics were tested for co-

linearity by using the Pearson’s correlation coefficient, in which it was found that distance to 

urban and distance to shoreline correlated (r2 = 0.811) and urban area 500m buffer 

correlated with urban area 4km buffer (r2 = 1.00), therefore the distance to shoreline and 

urban area 4km buffer variables were removed from any further analyses. 

 

Data Analysis 

To test which environmental factors (Table 1) influenced the variation in fish assemblages 

and distributions, multivariate generalised linear models (manyGLMs) were created in the 

mvabund package in R (Wang et al. 2012). Both RUVS and BRUVS analyses were 

conducted under the same format. Due to manyGLM models not being able to account for 

random factors, I included site as a fixed effect to represent the effects of within-site 

similarities. The manyGLM employed a negative binomial family, and the process of 

selecting the best-fit models involved a reverse stepwise simplification approach based on 
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the Akaike Information Criterion (AIC), in which the best-fit model was that which contained 

environmental factors with the lowest AIC values. To visualize the effects of these significant 

factors on fish assemblages identified in the manyGLM, I used non-metric multidimensional 

scaling ordination (nMDS) based on a Bray-Curtis dissimilarity matrix. Vectors in the nMDS 

relate to significant variables in the manyGLM, with vectors pointing in the direction of sites 

relating to higher values of that variable, with the length of the line relating to the strength of 

the correlation.  

 

Using the glmmTMB package in R I was then able to construct generalised linear mixed 

models (GLMMs) to explore the effects of our environmental variables on species richness, 

total fish abundance, harvested fish abundance, and the abundance of each fish functional 

group (Elliott et al. 2007, Brooks et al. 2017). The site variable was included in each GLMM 

as a random factor. Natural splines were fitted to the GLMMs with no more than three 

polynomial functions, to capture possible nonlinear effects using the splines package in R 

(Brooks et al. 2017). To select the best fit models for our GLMMs, we used the dredge 

function in the MuMIn package which created models by using every possible combination of 

factors. Here I limited our best fit models to only include up to three significant factors. I used 

the Anova function in the car package to calculate the p-value and chi-squared values (χ2) for 

each variable in the GLMMs (Fox et al. 2007). The distribution of the residuals, outliers and 

dispersal of variance was checked at the beginning of each GLMM to identify which 

distribution family to use. RUVS GLMMs utilized a poisson distribution while the over 

dispersed BRUVS models were distributed using the negative binominal family (Wang et al. 

2012). 
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Table 1 Definition and measurement methods of environmental variables. 

Variable Definition Predictive Hypothesis Units Method 

Distance to 
estuary  

The gap between a 
deployment and the 
nearest estuarine inlet 

Estuaries often release nutrients into nearby marine ecosystems in the form of plumes 
(Hyndes et al. 2014). This boost in nutritional support to the ecosystem may promote 
species diversity and richness at closer deployments. 

Meters Nearmap 

Distance to 
headland 

The gap between a 
deployment and the 
nearest headland 

Typically headlands are complex coastal habitats which increase biodiversity, functional 
diversity, and abundance (Ortodossi et al. 2019). I predict that deployments within 
proximity of a headland will support more fish species with high levels of functional 
diversity. 

Meters Nearmap 

Distance to 
reef 

The gap between 
separated reef 
structures 

Neighbouring reef rocky reef structure adds habitat heterogeneity, promoting an increase 
in species richness, abundance, and functional diversity (Ortodossi et al. 2019). Here I 
predict that reef patches close together will support greater fish species and functional 
diversity than more isolated patches. 

Meters Nearmap 

Distance to 
Urbanisation 

The gap between a 
deployment and the 
nearest urban 
structure 

The effects of urbanisation have been found to extract resources, spread pollution and 
alter species compositions (Halpern et al. 2008). Therefore it is predicted that species 
richness, abundance and functional diversity will be highest further form urban 
disturbances. 

Meters Nearmap 

Distance to 
shoreline 

The gap between a 
deployment and the 
shoreline 

It is predicted that species will prefer further distance from the shoreline due to deeper 
waters, and further distance from human disturbances. 

Meters Nearmap 

Area of 
headland 

The area of headland 
within a 500m2 or 
4km2 buffer of each 
deployment 

Higher headland area would suggest larger headlands, indicating more complex habitat. I 
predict higher abundance and richness when area of headland increases across both 
metrics. 

Meters 
squared 

QGIS 

Area of urban 
land 

The area of 
urbanisation within a 
500m2 or 4km2 buffer 
of each deployment 

I predict that urbanisation within 500m2 of a deployment will negatively impact fish 
communities, however urbanisation within 4km2 is too far from a deployment to have 
much of an impact. 

Meters 
squared 

QGIS 

Area of reef The area of reef within 
a 500m2 or 4km buffer 
of each deployment 

Here I predict as the area of reef increases, so will abundance, richness and functional 
diversity due to the high levels of habitat heterogeneity that is found in reef habitats. 

Meters 
squared 

QGIS 
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Results 

I found 97 species on inshore reefs over 96 hours of camera footage from the BRUVS and 

RUVS. I found 71 species and 2328 individuals with the RUVS footage, and 81 species and 

2924 individuals from the BRUVS. Black rabbitfish (Siganus fuscescens) was the most 

frequently occurring species across both BRUVS and RUVS occurring 663 and 605 times 

respectively. Additionally noted was the high abundance of eastern Sea garfish 

(Hyporhamphus australis) which occurred 223 times on the BRUVS and 179 times on the 

RUVS, and yellowtail scad with 228 individuals observed on the RUVS and 223 individuals 

on the BRUVS. 

 

Habitat context and connectivity modifies fish communities 

Habitat context and connectivity significantly influenced the variation in fish assemblage 

compositions (Fig. 2, Table 2). I found that RUVS fish assemblages were most impacted by 

distance to estuary and area of reef within 500m buffer (Fig. 2a), however, assemblages 

analysed on the BRUVS indicated they were most influenced by headland area within a 

500m buffer (Fig. 2, Table 2). Different metrics describing the fish community (e.g. species 

richness, harvested fish abundance and total fish abundance) observed on the RUVS were 

best explained by reef area within a 500m2 buffer, reef complexity, urban area within a 500m2 

buffer, distance to urbanisation and distance to headland (Fig. 3). Similarly, the best fit 

models for BRUVS deployments indicated that reef area, urban area and headland area 

within 500m2 buffers, reef complexity, distance to nearest reef patch and distance to 

urbanisation explained the variation in fish metrics (Fig. 4). On the RUVS analyses, species 

richness was highest when reef area had a moderate extent (χ2 = 9.331, p = 0.009, Fig. 3a), 

and when reefs were complex (χ2 = 28.111, p <0.001, Fig. 3b). Harvested fish abundance 

was found to increase as reef complexity increased (χ2 = 53.264, p <0.001, Fig. 3e). Total 

fish abundance on RUVS increased when either in immediate proximity or very far away 
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from a headland (χ2 = 64.347, p <0.001, Fig. 3g) and when the reef was complex (χ2= 

137.882, p <0.001, Fig. 3h). BRUVS footage revealed that species richness increased with 

reef complexity (χ2 = 11.359, p = 0.003, Fig. 4a) and reef area (χ2 = 12.644, p = 0.002, Fig. 

4b). Harvested fish abundance on the BRUVS was highest when close to neighbouring reef 

patches (χ2 = 15.132, p <0.001, Fig. 4d) and when nearby headland area was small (χ2 = 

8.179, p = 0.017, Fig. 4e). Total fish abundance on BRUVS was highest when neighbouring 

reef patches were far away (χ2 = 171.046, p = <0.001, Fig. 4g) and when reef area was 

reduced (χ2 = 102.033, p = <0.001, Fig. 4i). 

 

 

Figure 2 Non-metric multi-dimensional scaling ordinations (nMDS) highlighting the 
effects of environmental factors across the entire fish assemblages. For the RUVS 
deployment, a) displays the relationship between area of reef in a 500m2 buffer with 
distance to estuary and the one indicator species identified in our manyGLM. The 
BRUVS (b) illustrates the correlation of area of headland in a 500m2 buffer on the 
assemblage. The black line indicates the correlation of the environmental factor on 
the fish assemblages.  
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Table 2 Summary of “p uni” results, indicating the most significant habitat type for 
fish assemblages observed across both sampling methods 

Factor χ2 p 

Remote Underwater Video Stations 141.9 0.005 
Distance to estuary 129.3 0.018 

Reef area 500m buffer (m2)   

Baited Remote Underwater Video Stations   

Headland area 500m buffer (m2) 142.5 0.008 

 

Urbanisation negatively impacts fish communities 

All fish metrics (e.g. species richness, harvested fish abundance and total fish abundance) 

recorded on RUVS and BRUVS included at least one urban area within a 500m2 buffer and 

distance to urban measurement in the best fit model (Fig. 3 & 4). Species richness observed 

on the RUVS was highest when the area of nearby urbanisation was lowest (χ2 = 11.848, p = 

0.003, Fig. 3c). Harvested fish abundance increased when in proximity to urbanisation (χ2 = 

34.561, p <0.001, Fig. 3d), and was highest when sites had a low extent of urbanisation (χ2 

= 187.124, p <0.001, Fig. 3f). RUVS recorded a greater total fish abundance when urban 

area was at a moderate extent (χ2 = 212.535, p <0.001, Fig. 3i). The BRUVS deployments 

highlighted that species richness was impacted by urban area within a 500m2 buffer, with 

species richness at its highest at a moderate extent of urban area (χ2 = 8.721, p = 0.013, 

Fig. 4c). Harvested fish abundance also was at its highest when urban area within a 500m2 

buffer had moderate extent (χ2 = 24.242, p <0.001, Fig. 4f). Total fish abundance on BRUVS 

was highest when at a moderate distance away from urbanisation (χ2 = 95.203, p = <0.001, 

Fig. 4h). 
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Figure 3 Generalised linear mixed models highlighting the effects between different environmental and urban factors on the RUVS 
analysis. (a-c) illustrates the variation of species richness, (d-f) illustrates harvested fish abundance, and (g-i) highlights total fish 

abundance variation. Grey shaded area illustrates the 95% confidence intervals. 
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Figure 4 Generalised linear mixed models highlighting the effects of different environmental and urban factors on the BRUVS 
analysis. (a-c) shows the variation in species richness, (d-f) highlights harvested fish abundance variation and (g-i) indicates the 
variation in total fish abundance. Grey shaded area illustrates the 95% confidence intervals.
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Functional group distributions 

Zoobenthivores were the most dominant functional group across both deployment methods 

with 53 species identified. I found 13 species of herbivores, 7 species of omnivores, 23 

species of piscivores and only 1 zooplanktivore. Due to only observing one zooplanktivore 

(southern herring, Herklotsichthyes castelnaui) on BRUVS footage, the GLMM was modelled 

on southern herring abundance alone as the representative for the functional group. The 

most abundant species were black rabbitfish (Siganus fuscescens), yellowtail scad (Atule 

mate), eastern sea garfish (Hyporhamphus australis), eastern pomfred (Schuettea 

scalaripinnis) and Gunthers wrasse (Pseudolabrus guentheri). The top harvested species 

were black rabbitfish, yellowtail scad, southern herring and stripped barracuda (Sphyraena 

obtusata). 

 

Herbivores 

The most abundant herbivore that occurred across all sites was the black rabbitfish which 

we observed 1268 individuals. For the RUVS analysis, herbivores were typically found 

occupying sites that had low urban area within a 500m2 buffer (χ2 = 5.729, p = 0.057, Fig. 

5a), with a gradual decrease in individuals as urban area increased. However on the 

BRUVS, herbivore abundance was higher when distance to headland was at a moderate 

extent (χ2 = 8.962, p = 0.012, Fig. 6a), when the headland area within 500m2 was lowest (χ2 

= 29.829, p <0.001, Fig. 6b), and when the urban area within a 500m2 buffer was at a 

moderate extent (χ2 = 10.319, p = 0.006, Fig. 6c). 

 

Omnivores 

The omnivore that was most abundant was the eastern sea garfish occurring a total of 369 

times. Omnivore variation was explained on the RUVS by distance to estuary with higher 
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abundance when near the estuary mouth (χ2 = 12.195, p = 0.006, Fig. 5b). Reef complexity 

modified omnivore abundance with this being highest when the complexity rating was a four 

or higher (χ2 = 6.315, p= 0.042, Fig. 5c). Lastly, on the BRUVS observations we found that 

omnivore abundance is highest when either near or very far from nearby reef patches (χ2 = 

17.703, p = 0.021, Fig. 6d). Complexity impacted omnivores with a higher abundance 

occurring when the complexity rating was 3 or higher (χ2 = 16.304, p <0.001, Fig. 6e). 

Omnivore abundance was highest when reef area within a 500m buffer was at a moderate 

extent (χ2 = 10.309, p = 0.006, Fig. 6f). 

 

Piscivores 

The most frequently occurring piscivore species was the yellowtail scad with 451 individuals 

observed. The RUVS analysis found that piscivore variation was best explained by the urban 

area within a 500m2 buffer with piscivore abundance being highest when urban area was 

lowest (χ2 = 6.5519, p= 0.038, Fig. 5d). The BRUVS analysis found that piscivores were most 

abundant when close to the estuary mouth (χ2 = 13.227, p = 0.001, Fig. 6g). Piscivores were 

most abundant when reef area within a 4km2 buffer was large (χ2 = 19.760, p <0.001, Fig. 

6h). Piscivores were modified by urban area within a 500m2 buffer, with a higher abundance 

when urban area was lowest (χ2 = 9.554, p = 0.008, Fig. 6i). 

 

Zoobenthivores 

The most abundant zoobenthivore observed was the eastern pomfred with 349 total 

individuals noted. There were no environmental factors that best explained the variation of 

zoobenthivores on the RUVS analysis. Zoobenthivore abundance on BRUVS was found to 

be highest at an intermediate distance away from headlands (χ2 = 8.593, p = 0.013, Fig. 6j). 

Zoobenthivore abundance was highest when close to a nearby reef or when further away (χ2 



 27 

= 6.857, p = 0.032, Fig. 6k). Zoobenthivores were most abundant at a moderate extent of 

reef area (χ2 = 7.682, p = 0.021, Fig. 6l).  

 

Zooplanktivores 

I only observed one zooplanktivore species, the southern herring which had an abundance 

of 95 individuals, but this was only recorded on one BRUVS deployment. There were no 

environmental factors that significantly modified the abundance of southern herring (Table 3). 
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Figure 5 Generalised linear mixed models illustrating the effects of different factors 
describing the variation of the functional groups on the RUVS analysis. Grey shaded 
area illustrates the 95% confidence intervals.  
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Figure 6 Generalised linear mixed models illustrating the effects of environmental and urban factors on the (a-c) herbivores, (d-f) 
omnivores, (g-i) piscivores and (j-l) zoobenthivores on the BRUVS analysis. Grey shaded area illustrates the 95% confidence 
intervals. 
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Table 3 The best fit models and their significant values for each response variable on RUVS and BRUVS 

Response 
variables 

Best fit model 

RUVS 
Species richness Reef area 500m buffer (χ2 = 9.331, p = 0.009) + Reef complexity (χ2 = 28.111, p <0.001) + Urban area 500m buffer (χ2 = 

11.848, p = 0.003) 
Harvested fish 
abundance 

Distance to urban (χ2 = 34.561, p <0.001) + Reef complexity (χ2 = 53.264, p <0.001) + Urban area 500m buffer (χ2 = 
187.124, p <0.001) 

Total fish abundance Distance to headland (χ2 = 64.347, p <0.001) + Reef complexity (χ2 = 137.882, p <0.001) + Urban area 500m buffer (χ2 = 
212.535, p <0.001) 

Herbivores Urban area (χ2 = 5.729, p = 0.057) 
Omnivores Distance to estuary (χ2 = 12.195, p = 0.006) + Reef complexity (χ2 = 6.315, p= 0.042) + Distance to headland (χ2 = 5.597, 

p = 0.061) 
Piscivores Urban area 500m buffer (χ2 = 6.5519, p= 0.038) 
Zoobenthivores Distance to estuary (χ2 = 45.853, p <0.001) + Distance to urban (χ2 = 65.907, p <0.001) + Headland area 500m buffer (χ2 

= 45.329, p <0.001) 
BRUVS 
Species richness Urban area 500m buffer (χ2 = 8.721, p = 0.013) + Reef area 500m buffer (χ2 = 12.644, p = 0.002) + Reef complexity (χ2 = 

11.359, p = 0.003) 
Harvested fish 
abundance 

Distance to nearest reef patch (χ2 = 15.132, p <0.001) + Headland area 500m buffer (χ2 = 8.179, p = 0.017) + Urban area 
500m buffer (χ2 = 24.242, p <0.001) 

Total fish abundance Distance to nearest reef patch (χ2 = 171.046, p = <0.001) + Distance to urban (χ2 = 95.203, p = <0.001) + Reef area 
500m buffer (χ2 = 102.033, p = <0.001) 

Herbivores Distance to headland (χ2 = 8.962, p = 0.012) + Headland area 500m buffer (χ2 = 29.829, p <0.001) + Urban area 500m 
buffer (χ2 = 10.319, p = 0.006) 

Omnivores Distance to nearest reef patch (χ2 = 17.703, p = 0.021) + Reef area 500m buffer (χ2 = 10.309, p = 0.006) + Reef 
complexity (χ2 = 16.304, p <0.001) 

Piscivores Distance to estuary (χ2 = 13.227, p = 0.001) + Reef area 4km buffer (χ2 = 19.760, p <0.001) + Urban area 500m buffer 
(χ2 = 9.554, p = 0.008) 

Zoobenthivores Distance to nearest headland (χ2 = 8.593, p = 0.013) + Distance to nearest reef patch (χ2 = 6.857, p = 0.032) + Reef area 
500m buffer (χ2 = 7.682, p = 0.021) 

Zooplanktivores NULL 
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Discussion 

Habitat complexity, and connectivity impact fish communities and are essential to 

determining the distribution of fish species and to design critical conservation and 

management strategies (Airoldi et al. 2005). Additionally, the condition, availability, and 

context of habitats, which are influenced by the physical and biological aspects of 

seascapes, can further dictate the composition of fish assemblages in marine ecosystems 

(Sheaves 2009, Nagelkerken et al. 2015, Borland et al. 2017). In this study I found that fish 

richness was influenced by the area of reef and urbanisation nearby and the complexity of 

that reef. Harvested fish abundance was highest when nearby headland area and urban 

area was low and when close to neighbouring, highly complex reef systems. Similarly total 

fish abundance was influenced by connectivity and the area of nearby headlands, 

urbanisation and neighbouring reef patches and reef complexity. I found that herbivores and 

piscivores on both RUVS and BRUVS sites were more common when nearby urban area 

was minimised. Similarly, herbivores and zoobenthivores, both had an increase in 

abundance when headland area was at a moderate extent. Omnivores and zoobenthivores 

were more abundant when the area of reef nearby had a moderate extent. Lastly, omnivores 

and piscivores were more common when near an estuary. I highlight the need to prioritise 

the management of complex inshore reef habitats within diverse seascapes that have 

reduced urbanisation nearby in order to maximise fish abundance, diversity and a diversity 

of fish functional groups. 

 

Inshore rocky reef systems typically provide benefits for fish communities through the added 

shelter and resources they provide, leading to greater fish abundance and diversity (García-

Charton & Pérez-Ruzafa 2001, Friedlander et al. 2003, Emslie et al. 2008). Although many 

coastal ecosystems are well studied (Olds et al. 2012b, Gilby et al. 2018, Mosman et al. 

2020), little is known about the environmental factors that influence inshore rocky reef fish 

communities, particularly within sub-tropical seascapes. Here, I found that complexity, the 
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area of reef and connectivity to natural ecosystems strongly influenced species richness, 

total fish abundance, harvested fish abundance and the abundance of the multiple fish 

functional groups, highlighting the importance of complex seascapes in structuring coastal 

fish communities. For example, I found the herbivores, with the most common being the 

black rabbitfish, were more abundant in rocky headlands that consist of subtidal rocky reef. 

This reef is ideal habitat for algae growth due to clearer water, promoting herbivore 

abundance (Witman & Dayton 2001, Thibaut et al. 2017). Similarly, omnivore abundance 

increased on mid-sized complex reef systems, which provide a broad variety of algae and 

benthic organisms to feed on (Thompson et al. 2007), and when nearby estuaries, which are 

highly productive ecosystems with a wide availability of prey items such as juvenile fish and 

invertebrates (Schlacher & Connolly 2009). Lastly, I identified that the complexity and area of 

the reef system and proximity to headland was a significant factor influencing the total 

abundance of fish, the abundance of harvested fish and the abundance of zoobenthivores 

(Borland et al. 2022). Our findings support the maintenance of diverse and complex 

seascapes as a key feature of coastal seascape as they modify the distribution and 

abundances of key components of the fish community (e.g. diversity, abundance and the 

abundance of key functional groups), however the impacts of urbanisation are likely to be 

detrimental to these effects on inshore reefs. 

 

Human disturbance such as increased urban development, climate change and overfishing 

can reduce connectivity, condition and extent of coastal ecosystems (Stuart-Smith et al. 

2008, Bishop et al. 2017). These impacts of urbanisation, reduce the health and resilience of 

critical fish populations and their habitat, as well as the important ecological functions that 

they provide (e.g. herbivory, predation and carrion consumption) (Olds et al. 2018a). In this 

study, species richness, total fish abundance and harvested fish abundance recorded on 

unbaited camera were found to decline as urban area increased or when close to nearby 

urbanisation, contrasting to the baited cameras where we found that species richness and 
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harvested fish abundance both benefited from a moderate extent of urbanisation. This result 

suggests that some species may be able to cope with moderate levels of disturbance, with 

some impacted ecosystems containing a greater abundance of food or refuge (Aronson et 

al. 2014, Dafforn et al. 2015, Olds et al. 2018a) For example, I found that herbivores were 

more abundant in ecosystems near a moderate extent of urbanisation, which commonly 

contain in-water structures (e.g. jetties, pontoons and artificial seawalls) and increased 

nutrients that promote algal growth (Bishop et al. 2017). Conversely, I found piscivores to be 

negatively impacted by human disturbance. In this study, the most commonly occurring 

piscivores observed were yellowtail scad, thick lip trevally (Ferdauia orthogrammus) and 

Sphyraena species which are the targets of commercial and recreational fishers (Defeo et al. 

2009, Vargas-Fonseca et al. 2016). I show that human disturbance has contrasting effects 

on coastal fish assemblages. Herbivores may benefit from urban structures promoting 

specific shelter and feeding opportunities, while piscivores may actively avoid areas 

impacted by humans due to increased recreational fishing. I suggest that urban development 

strategies concentrated in coastal regions be approached with caution, aiming to minimize 

potential adverse impacts on the coastal fish populations. 

 

Identifying the habitat context, connectivity and condition of ecosystems that are optimal for 

maintaining increased biodiversity, productivity and ecosystem functioning is essential for the 

conservation of coastal environments (Nagelkerken et al. 2015, Olds et al. 2016). 

Furthermore, the levels of nearby urbanisation, the complexity of habitats and their 

configuration should be considered when determining suitable locations for management 

and conservation (Crowder et al. 2000, Olds et al. 2012a). Here, I highlight that coastal fish 

communities typically benefit from an increased diversity of natural ecosystems within the 

seascape and are negatively impacted by anthropogenic disturbances. I suggest that 

conservation and management strategies moving forward, should be focused around 

moderate to large sized reefs with high levels of complexity. The natural features of coastal 
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seascapes were consistently beneficial for species richness, total fish abundance and the 

array of functional groups. In our study region, complex inshore reef systems are typically 

established around natural headlands, which should be the focus for conservation efforts, 

particularly when those headlands are in close proximity to estuaries. These identified rocky 

reef ecosystems are pivotal for the promotion of biodiversity (Beger et al. 2010), the 

maintenance of ecological functions (e.g. predation, herbivory, carrion consumption) 

(Manning et al. 2018), and facilitate the provisioning of ecosystem services (fisheries) 

(Ferreira et al. 2019) that the fish communities provide. Of the 97 species observed in this 

study, approximately 20 are targeted by recreational and commercial fisheries. Following the 

suggested strategies will benefit the coastal fish communities by providing essential habitat 

required for shelter, feeding and reproduction, promoting fish populations and subsequently 

benefiting recreational and commercial fisheries (Olds et al. 2012a, Edgar et al. 2020). 

Ultimately, due to the unique and essential roles of the functional groups found in these 

marine ecosystems it is of paramount importance to recognise and address the different 

conservation strategies required to benefit all functional groups to maintain a healthy and 

sustainable ecosystem (Sheaves 2009, Hall & Kingsford 2021). 

 

This study highlights how complex natural ecosystems, their connectivity to other 

ecosystems, their context within the broader seascape and the level of nearby human 

disturbance can modify the distribution and abundance of coastal fish species found within 

nearshore rocky reef ecosystems. I identified that increased complexity and connectivity of 

the rocky reefs to other ecosystems were the main factors that positively modified the 

species richness, total fish abundance, harvested fish abundance and functional group 

composition, and suggest that maintaining these features should be a key focus for 

conservation and management. However, I did find that in some contexts a moderate 

amount of urbanisation provided benefits for some coastal species and therefore when 

designing conservation strategies should not be viewed as a reason to not implement 
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conservation or management. Understanding how human disturbances and the composition 

of the coastal seascape interact to modify fish communities is key to maintaining diverse and 

abundant coastal fish assemblages now and in the future. 
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